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The need for a mathematical model of the interaction between frozen soils and salt solutions arises in 
studies of numerous natural and industrial processes. For instance, the interaction of seawater and northern 
subsea frozen rocks was shown [1-3] to affect significantly the dynamics of their thawing. The effect of salt 
solutions on frozen rocks during drilling with the use of salt-containing fluids was reported in [4, 5]. The 
presence of salt in the drilling fluid allows its cooling to negative temperatures, thereby decreasing the washout 
radius and. as a consequence, the cavity formation. The evolution of cryopegs (spaces in frozen rocks filled 
with salt-containing waters of negative temperatures) is another example of the natural process of interaction 
between frozen soils and salt solutions, given in [6]. 

In this paper, we developed a mathematical model of heat and mass transport involving phase 
transitions in frozen soils, obtained a self-similar solution (numerical and analytical for the linearized problem), 
and carried out a numerical treatment of the nonsteady-state problem. 

1. T h e  M o d e l  of  Frozen  Soil. A qualitative model of frozen soil based on the assumption that 
nonfreezing moisture is present in frozen soils was described in [7]: ". . .  at any moment the frozen soil is 
assumed to contain some liquid water (filling the pores or interspersed between mineral particle contacts) in 
equilibrium with a number of ambient factors, such as temperature, pressure, and others." The equilibrium 
is not regarded as a merely thermodynamic one, but as a more general fact that frozen soils "respond" to 
environmental alterations, resulting in a new equilibrium state. 

The H20 phase transition temperature is known to depend on the concentration of the dissolved 
admixture, pressure, and the surface interaction forces. It is natural to assume that in pores of the frozen soil 
water exists in the liquid state at negative temperatures owing to the above-mentioned reasons and is in local 
thermodynamic equilibrium with pore ice. This thermodynamic equilibrium can be expressed quantitatively 
by the formula relating the temperature of the water-ice phase transition to the admixture concentration 
(the pressure and surface phenomena are beyond the scope of this article). In actual practice, use is more 
frequently made of the linear dependence 

T I = Tw - ac, (1.1) 

where a is a coefficient characterizing the water-ice phase transition temperature reduction. 
The thermodynamic equilibrium condition means that the local temperature of the frozen soil T is 

equal to the local temperature of the phase transition T I calculated from (1.1). From this definition it is 
apparent that any environmental change upsets the thermodynamic equilibrium between ice and nonfreezing 
water within the pore space, resulting in either water crystallization or ice melting, accompanied by heat and 
mass transport until new equilibrium is achieved. 

We consider a qualitative example. Let the aqueous salt solution in the pore space be in equilibrium 
with ice at a negative temperature Tf = Tw - c~c. Decreasing the frozen soil temperature by AT results in 
crystallization in pores, the salt being driven into the solution. This lasts until the admixture concentration 
increases by a value Ac such that a new equilibrium described by the equation Ty - AT = Tw - a(c + Ac) is 
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achieved. Conversely, a rise in temperature results in ice melting and di!ut~ca of the solution, which reaches 
equilibrium with ice at an elevated temperature. Pressure changes act in a similar manner. To construct a 
mathematical model of phase transitions in frozen soils it is necessary to supplement the equilibrium condition 
(1.1) with transport equations and initial and boundary conditions, including those at mobile freezing-thawing 
interfaces. 

2. S t a t e m e n t  of  t h e  P r o b l e m .  A mathematical description of heat and mass transport involving 
phase transformations in frozen soils can be derived within the framework of continuum mechanics from the 
laws of conservation of mass, momentum, and energy, and also from the laws of thermodynamics. Such an 
approach brings into existence a set of equations where the desired functions are pressure, concentration of 
dissolved admixtures, humidity, etc. We consider a set of equations describing variations in phase composition 
and transport of heat, water, and dissolved admixtures. Frozen soils are taken to be porous media saturated 
with ice and nonfreezing water. Gaseous components and water vapor are assumed absent. The matrix of the 
porous medium, ice, and pore fluid are incompressible and immobile. Admixture molecules are missing from 
the ice crystals. The whole of the dissolved adnfixture is driven into the solution and does not precipitate 
during ice formation. Ice and nonfreezing water are in thermodynamic equilibrium, that is, the characteristic 
time of the macroprocess is far beyond that of attainment of the local thermodynamic equilibrium. 

In terms of these assumptions the law of conservation of mass, as applied to the dissolved matter, takes 
the form 

O(ra S c)/Ot - div ( D m  S grad c) = 0, (2.1) 

where m is the porosity; S is the humidity; c is the mass concentration of the dissolved matter; D is the 
diffusion coefficient. This equation follows from the general continuity equation for dissolved matter and 
takes into account the diffusion mechanism of admixture transport and also the concentration (dilution) of 
the solution as the water saturation function decreases (increases). The convective mechanism of admixture 
transport is not considered here because of the assumption that no fluid flow takes place. 

The energy equation accounting for heat liberation and absorption accompanying phase transitions in 
the frozen soil can be written as 

(p C)r OT/Ot - div (At grad T) + m pi q OS/Ot = 0. (2.2) 

Here 

( p C ) r = ( 1 - m ) p s C s + m S p w C w + m ( 1 - S ) p i C i ;  Ar = ( 1 - m ) A s + m S A w + m ( 1 - S ) A { ;  q = h w - h i ;  

p is the density, C is the heat capacity, A is the heat conductivity, q is the heat of water-ice phase transition, 
and h is the enthalpy; the subscripts are s for soil matrix, w for water, and i for ice. 

Statements of problems involving phase transitions include the desired moving phase-transition 
surfaces, where the function S can have a discontinuity. The conditions at the phase transition boundaries 
can be obtained from general relationships at discontinuity. We consider the jumps of the humidity function, 
at which the continuity conditions for temperature and admixture concentration are satisfied: 

= o, [c]+_ = o. 

The laws of conservation of mass, dissolved admixture and energy at the jump take the form 

m[S]+cVn  + m [ D S ( g r a d  c)n] + = 0; (2.3) 

ra [ S ]_+ q V,, + [ A,~ (grad T) ,  ]+ = 0. (2.4) 

These conditions at humidity jumps must be supplemented by the thermodynamic equilibrium 
condition (1.1), yielding a complete set of conditions at unknown moving phase transition boundaries. 

We consider the interaction between frozen soiles and a salt solution. Let a frozen soil in the equilibrium 
state at a temperature To = Tw - aco and filling the half-space x > 0 be in contact with an aqueous salt 
solution with temperature T O and concentration e ~ (T o > Tw - ac ~ at the immobile boundary x = 0. 
If the boundary temperature is lower than the initial one, then, taking into account the higher rate of heat 
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transport compared to admixture diffusion, it is reasonable to suggest that two fronts of phase transitions exist: 
the crystallization front initiated by cooling~ and the melting front initiated by destruction of pore ice at its 
contact with the brine. As is shown in [8], the statement of a two-front problem contains a contradiction, which 
causes the violation of the thermodynamic equilibrium condition in the frozen soil zone. This is manifested 
as "overheating" or "overcooling" of the ice-brine mixture filling the pores. Thus, the frontal regime of phase 
transitions in frozen soils does not take place at all. 

To construct a consistent theoretical description, it is sufficient to assume that phase transitions occur 
over the whole frozen soil zone. The fact that phase transitions propagate through the entire half-space is due 
to the temperature disturbances propagating at infinite velocity. In such a case, the mathematical st~atement 
of the problem assumes the existence of the front of partial phase transitions propagating to the right of x = 0 
and separating the zones of thawed (left of the front) and frozen (ahead of the front) soil. 

In the thawed soil zone the following equations for heat conductivity and salt diffusion hold true: 

OT/Ot = atAT, Oc/Ot = DAc, x < ~((t) (2.5) 

Equations (2.1) and (2.2) is a system of transport equations involving phase transitions in the frozen 
soil zone. 

At the moving boundary representing the thawing front of the frozen soil (ice absent at the back of 
the front) boundary conditions (2.3), (2.4) hold true. 

If the disturbances of the desired functions are negligible compared to their absolute values, it is 
reasonable to consider the solution of the problem in a linear approximation. Thus. linearization of Eq. (2.1) 
near the initial state yields 

Oc OS 
So ~ + co -~- - D So Ac = 0 (2.6) 

as a first approximation. 
Note that the two remaining equations in the system are already linear. A system of equations for 

saturation and temperature disturbances is obtained by expressing the admixture concentration in terms of 
(1.1) and substituting-it into (2.6): 

OT aco  OS OT m q pi OS 
- D A T ,  - -  + - -  = ar A T .  ( 2 . 7 )  

Ot So Ot 01 (pC)r Ot 

The humidity function appears only in the form of the time derivative. Having eliminated these 
derivatives, we obtain the effective heat equation 

OT 
Ot 

where 

= amAT,  

. 

Am m D q So pi m q So pi 
a , , =  (pC)r , ;  A m -  + a t ;  ( p C ) , , -  + 1 .  c0 (p C)r ~ c0 (p C),  

Sel f -Similar  Solut ion.  We consider a solution of the linearized problem in the one-dimensional 
approximation. If To, co, So, T ~ and c o are constants, then the problem has a Neumann type self-similar 
solution 

T = T ( ( ) ,  c = c ( ( ) ,  S = S ( ( ) ,  x = x ( t ) = p v ~ ,  ( = z / v / t .  

At 0 < z < x(t) 

T = T o + ( T ,  - c = c ~ + ( c ,  - c~ (3 .1)  

at x > x(t)  

T = To + (T. - To) erfc (~/2vrfi~m)/erfc (~/2Vr~'~m). (3.2) 
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The distribution of the admixture concentration in the region bcf~r:, the front is deduced from the 
equilibrium Eq. (1.1). To determine the humidity function in this domain, spatial derivatives are eliminated 
from system (2.7). This yields the following relationship between humidity and temperature: 

where 

T - To = - S o L  (3.3) 

D [ m q p i  acoaT l 
aT L (p C)T So D J" 

The conditions at the moving boundary in the self-similar approximation take the form 

mpiq(1 -- S,) ~ = A+ - A_ , 
+ 

(3.4) 
c , ( l - S , ) c 2 _ s , ( d c ~  ( d e ) _ ,  T , = T w - a c ,  

D 2 d - ~ / + - , , - ~  

Substituting solutions (3.1)-(3.3) into (3.4) produces a system of transcendental equations for 

_ _  exp(--T2/4am)'~ ( T , - - T  0 exp(-c22/4al)'~ 
erfc(~/2Vrd_~m ) ] +  + A _ \  ~ erf(T/2v/57) ] -  = 0, 

unknowns T,, c,, and ; :  

(r , -  ro mpiq(1  - S)-~ + A+\ 

c,(1-S,) a s , ( T , -  To exp(-c2214am)) ( c , - _ c  ~ exp (-c22/4D)'~ T ~ -  T, 
D 2 \ ~ erfc(c2/2fi'~m ) ] +  + \ ~ erf(c2/2v/D) ] _  = 0, c, - a 

If the disturbances of the desired functions are comparable to their absolute values, the construction of a 
self-similar solution requires solving a two-point boundary-value problem for the system of ordinary differential 
equations for the frozen zone, obtained from (2.1), (2.2) by the replacement ~ = z/x/q, and also a system of 
transcendental equations for the required interface, temperature,  and concentration at this boundary. 

4. N u m e r i c a l  So lu t i on  for t h e  N o n s t e a d y - S t a t e  P r o b l e m .  For numerical solution of the 
nonclassical problem considered here, we use an implicit finite-difference scheme combining advantages of 
the finite-difference p~edictor-corrector method and of the approach of fixing the ice-two-phase zone interface 
at a node of a rectangular spatial-temporal grid [9, 10]. On the segment [0, 1] we introduce a quasi-uniform 
grid 

~ h = { x i = x i _ l + h i ,  i = l , n ;  x 0 = 0 ;  h i = a h i - 1 ,  i=1- - ,~} ,  

whose steps form an increasing geometrical progression with a denominator a > 1. The grid parameters n, 
h0, a are chosen so that xn = L. The magnitude of the time step is determined during the solution of the 
problem. 

We assume that approximate values of the solution to the original problem are known up to the instant 
t = tj-1. A computational algorithm for the transition into the next time layer can now be constructed. 

The implicit discrete analogs of the heat transport  and diffusion equations in the thawed zone (2.5) 
are written 

Ti - Ti Ti+l - Ti Ti - T -I 
h i -  - i = 1,j  - 1"; (4.1) 

alr hi+l hi ' 

hi ~ci - ~i = Ci+l - ci ci - ci-1 , i = 1,j  - 1 . (4.2) 
D r hi+l hi 

From Eqs. (3.1), (2.2) and relationship (1.1) we deduce an equation from which the temperature 
distribution in the frozen zone is to be found. From (2.!) by virtue of (1.1) it follows that  

OS O ( O T )  OT 
( T -  T w ) - ~  = D-~x S-~x - S - - ~ ,  x > X ( t ), t > 0 .  
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Substituting the right-hand side of this relationship for the last term into the right-hand side of differential 
equation (2.2) yields 

OT O (OT) D 0 ( o r )  1 OT 
( p C ) r o t - O x  Ar--~Z - m P i q r 2 - T w O x  S T x  + m p i q T - T ~ ,  Or' x > x ( t ) ,  t > O .  

We approximate this equation by implicit three-point finite-difference equations: 

pi q m - _ 
hi [ (pC)r,i Ti - Tw ] Ti 7" ' i  [ /~r,i+l/2 m q pi _ Tw ] Ti+l - [ /~r,i-1/2 

i = j + l , n - 1 .  

Here 

mqpi  D - Ti-1 ~ =-T-j ] T' -;, , 
(4.3) 

(pC)r,k = (1 -- m) ps Cs + mSkpw Cw + m(1 - Sk)p~ C~; 

)~r,k+l/2 = (1 --  m).~s -~- m/~i q- m(.~w -- ~i)(Sk + S k + 1 ) / 2 .  

The distribution of the salt concentration in the frozen zone is found from a discrete analog of relationship 
(1.1) expressing the thermodynamic equilibrium of water and ice: 

ci = (T~, - Ti) /a,  i = j, n. (4.4) 

By means of the additivity principle [9], the Roth differential-finite-difference scheme 

T -  :F 0 ~/'A, OT'~) OS (pC)r - - - v -  - ox ~ - p~ q r ~ - ~ '  x > ~(t) ,  

approximating the law of conservation of energy can be carried out numerically in two steps. In the first step, 
an auxiliary temperature distribution is found as a solution of the following heat equation: 

r Ox Ap , z > Xj 

[Ap = (1 - re)As +mAi]. We write its implicit discrete analog 

-hi (p C)r i Ti - Ti _ Ti+l - Ti Ti -- Z i - 1  i = j + 1, n - 1. (4.5) 
' /~p  r hi+l hi ' 

[n the second step, the Roth scheme for the temperature distribution in the upper time layer is written 

(pC)~ T -  T (,~z - ~,) o ( s  OT) o s  
-- -~x \ Ox ] -- pi q m "-~ ' x > ,Xj . 

Since ice and water in the two-phase zone are in thermodynamic equilibrium, and local values of temperatures 
and of the salt concentration in the solution satisfy condition (1.1), from the relationship deduced above, and 
using Eq. (2.1) we obtain 

C) T - T  (Ap_At)  S ( T - T , ) + a S e  S - S  
(P T = D 7" - pi qm ~ r  ' x > Xj. 

A discrete analog of this equation gives the humidity distribution in the two-phase zone: 

Si= pi q m S i - ( p C ) p ( T i - T i ) + ( A P - A t ) ~  (Si6i i = j , n - 1  (4.6) 
Pi q m+ [(p C ) t -  (p C)p]( Ti- 'Ti ) - ( Ap- At)( T i -  Tw ) ' 

[(p C ) p  = (1 --  m)(pC)s  q'- m(pC)i] .  
Prior to constructing discrete analogs of the boundary conditions at the unknown interface between the 

thawed and frozen zones we exclude the term containing the velocity of interracial motion from relationship 
(2.3), using condition (2.4): 

(T, - r~) [~ Or1 [ Lcl, 
[ OxJ = a q p i D  S o x  j t > 0 .  
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We write a discrete analog of this relationship: 

[ c,-,:i-q (4.7) (Tj-T,, ,)  A,.,j hj+l hj = m a q P i D  L ~+1 Sj hj J' 

and an implicit finite-difference approximation of the generalized Stefan condition (2.4): 

T i + l  - T j  - T j - 1  
mqps(1 - Sj) hjr = ,kr,j -~j-~l "kl hj (4.8) 

Discrete analogs of the boundary conditions at fixed boundaries are constructed in a similar manner. 
Hence, for the transition from the time layer (j - 1) to the next layer j a nonlinear system of algebraic 

equations should be solved. The nonlinearity of the system considered stems from the fact that we should 
know the time step in order to find the distributions of temperature, of the admixture concentration, and of 
humidity. Conversely, the calculation of the time step requires the knowledge of the temperature distribution 
or, at least, of temperature values in the vicinity of the interface between the thawed and frozen zones. 
Therefore, the solution of the resulting nonlinear system requires an iterative process. We use the following 
successive approximation method, which is essentially a variation of the method of ordinary iterations. 

Step 1. We set k = 0 (the iteration counter) and specify the initial approximation for the time step r0 
(for instance, r0 = "~). Clearly, it is necessary to set a separate initial approximation for the first time step, 
for example, by the formula 

"co =o'qpih'Z1/[At(Tto-aco- Tc)], o'E (0,1]. 

Step 2. We solve the linearized system of Eqs. (4.1)-(4.6) with the corresponding boundary conditions 
at the fixed boundaries. 

Step 3. We determine the next approximation for the phase transition temperature Tj from the 
linearized Eq. (4.7) and the time step from relationship (4.8). In doing so the least of the roots of the 
resulting square equation is taken as the next approximation for the ice-water phase transition temperature. 
The admixture concentration at the front can be deduced from the linearized relationship (4.4) 
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Step 4. We consider the iterative process error 

z - -  I T k + l / T k  - 1 1 .  

If z ~> e, where e is a small preset value, we increase k by one and return to step 2 in the iterative 
process. Otherwise the transition to the next temporal layer is assumed to be accomplished, and the desired 
time step, temperature distribution, and admixture and moisture concentrations in both phases and at the 
interface take the corresponding values from the last iteration. 

5. Ca l cu l a t i on  E x a m p l e s .  Below are given the computation results for three solutions to the one- 
dimensional problem to a linearized self-similar problem, to a self-similar problem in its original formulation, 
and a numerical solution to a nonsteady-state problem. The computation was made at the following 
parameters: Pw = 1,000 kg/m 3, Pi = 910 kg/m 3, ps = 2,000 kg/m 3, m = 0.2, Aw = 0.58 W/(m.K), 
Ai = 2.23 W/(m-K),  As = 2 W/(m-K),  c~ = 4,190 J/(kg-K), ci = 2,000 J/(kg.K),  cs = 1,920 J/(kg.K), 
q = 3.34.105 J/kg, D = 1.45 �9 10 -9 m2/sec, ~ = 66.7 K, Tw = 273.15 K, So = 0.5, To = 271 K, c o = 0.05. 

Figures 1 and 2 show the characteristic distributions of the desired functions in both zones. The solid 
line represent the numerical solution to the nonsteady-state problem; the dashed line, the numerical solution 
to the self-similar problem; and the dotted-dashed line, the solution to the linearized problem. The results 
of numerical experiments demonstrate the existence of two essentially different regimes of the interaction 
between frozen soils and salt solutions. 

In the first case (Fig. 1), where the temperature of the salt solution (T o = 272) is higher than that of 
the frozen soil, ice melting in the domain before the front can be observed along with the front of complete 

695 



thawing. The given distribution of salt concentration indicates the dilutio~ ~.f the solution in the vicinity of 
the front owing to additional water resulting from ice melting. The decrease ill admixture concentration causes 
its redistribution in both zones. This factor, along with heat transport, results in violation of thermodynamic 
equilibrium in the frozen soil zone, thereby causing phase transitions in an extended region before the front. 

The second case (Fig. 2) occurs when frozen soils interact with a high-salt solution whose temperature 
(T O = 270) is lower than that of the frozen soil. Here the existence of the complete thawing front is due to 
the salt "corroding" pore ice. This process is accompanied by a considerable heat absorption at the thawing 
front, and the temperature at the front becomes lower than the initial temperatures of the frozen soil and 
the salt solution. The cooling results in heat removal from the frozen soil zone, causing partial freezing. This 
is evidenced by a decrease in the humidity function at the front and in the region before it, as compared to 
its initial value. The propagation rate of the complete thawing front is determined mainly by the magnitude 
of heat flow from the thawed soil zone and is much higher in the case of the warmer solution (Fig. 1). It 
is noteworthy that the solutions to the precise and linearized formulations of the problem are satisfactorily 
similar. 

The constructed mathematical model for fl'ozen soil and phase transitions therein provides an 
explanation for some phenomena occurring during drilling of frozen rocks with the use of aqueous fluids 
when thawing and rock entrainment are much more pronounced than could be expected on the basis of the 
front heat problem. Indeed, if a frozen rock contains nonfreezing water with even a small amount of admixture, 
and the solution temperature is higher than that of the frozen soil, then thawing proceeds as is qualitatively 
shown in Fig. 1. That is, not only completely thawed zone emerges, as in the front model, but considerable 
partial thawing also takes place. Since the durability of frozen rocks is largely determined by their humidity 
(ice strengthens the rock), the achievement of a critical humidity during partial thawing will lead to a collapse 
and carrying-away of such incompletely thawed rocks. On the other hand, when using salt-containing cooled 
solutions for soil freezing, it should be taken into account that the freezing is accompanied by a slower process 
of thawing due to ice "corrosion" caused by the salt solution (Fig. 2). 

Similar phenomena are involved in the interaction between artificial structures and frozen soils. This 
case can be modeled by a wall permeable to heat but not to admixture. Then heat, coming into the soil fl'om 
a warmer surface, will cause thawing in an extended zone, resulting in deterioration in durability of a region 
much larger than that obtained from the Stefan heat problem. 

This work was supported by the Russian Foundation for Fundamental Research (Grant 94-01-0051:]). 
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